If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-250x+625=0
a = 19; b = -250; c = +625;
Δ = b2-4ac
Δ = -2502-4·19·625
Δ = 15000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15000}=\sqrt{2500*6}=\sqrt{2500}*\sqrt{6}=50\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-250)-50\sqrt{6}}{2*19}=\frac{250-50\sqrt{6}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-250)+50\sqrt{6}}{2*19}=\frac{250+50\sqrt{6}}{38} $
| 5(x-7)+2x=14 | | 5n=6=41 | | 3a-64=4a-96 | | 16z-14z=20 | | 4(2x-3)=6x-7 | | 3(x+-4)+-16=2(x+-8)+6 | | 7=-7w+5(w+5) | | .108=9r | | 2p+40=14p+28 | | 8j-7j=17 | | 7-w=14 | | 10=7(x-8)+4x | | 5y-19=7y-31 | | 25k+18=9k+10 | | 10y+1=11y | | r/7-6=12 | | 11=3u+2(u+3) | | s=2s-46 | | 8w-18=w+10 | | 2x-6=2(-9)-16 | | 20y-91=3y+96 | | (X+72)+(x+132)=180 | | 2x+4+1=11 | | n/7=−12 | | 7b+49=20b-94 | | 3t+5/8=-8 | | 180=5b+4 | | 18(⅓)^2x=2 | | (x-3)^2+4=40 | | 10x=20+10= | | 4r+7=47-r | | 16x+97=6x+39 |